管壳式换热器常见问题及解决办法
管壳式换热器普遍存在的问题是日常生活中常见的问题。对换热网络进行了梳理,主要从以下几个方面进行了梳理:
对于有内压的管壳式换热器,在什么条件下可以设计压力元件?我们还应该考虑什么?
1、对于由管子同时控制的部件和壳体的内部压力,只有当管子和壳体同时升高和减压时才能按压差速器设计。压差值还应考虑压力测试期间可能出现的大压差,设计人员应提出压力测试的步进程序。
2、第二步。如何确定管壳式换热器中受管壳侧温度影响的元件的设计温度?
管式换热器中同时受到管和壳温度影响的部件的设计温度可由金属温度决定,也可要求较高侧的设计温度。
3、如何确定管壳式换热器整体管板的有效厚度?
1)整体管板的有效厚度等于隔板槽底部管板的厚度减去以下两个厚度之和:
a)管道腐蚀边缘**过管道隔槽深度的部分;
b)壳侧的较大的壳侧腐蚀余量和管板的结构槽深度。
2)第二步。管板与换热管焊接时,管板的小厚度应满足结构设计和制造的要求,且不小于12 mm。
(见*3段)。组合管板小厚度及相应要求:
a)焊接并连接在管板和换热管之间的复合管板的厚度应不小于3mm。对于具有耐腐蚀性要求的层,该层的化学成分应不小于距离该层表面2mm。金相组织符合复合材料标准的要求;
b)覆层的小厚度不应小于10 mm,并保证覆层的化学成分和金相组织与覆层表面的深度不小于8 mm,不锈钢列管式换热器生产厂家,满足覆层材料标准的要求。
管壳式换热器运行前注意事项
关闭管壳式换热器又称列管式换热器。是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用较广的类型。
1、在运行换热器之前,检查所有连接是否已拧紧,系统参数是否**过制造标签上允许的工作压力和温度值。
2、在启动换热器泵之前,应打开换热器的所有阀门和排放阀以关闭热交换器的入口阀门。
3、启动换热器泵后,慢慢打开泵的出口阀,使压力缓慢上升。为防止单侧**压,进入换热器的两种介质的入口阀应同时打开,或缓慢注入低压侧介质。然后慢慢注入高压测量介质。
管壳式换热器由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。壳体多为圆筒形,内部装有管束,管束两端固定在管板上。进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。
为提高管外流体的传热分系数,通常在壳体内安装若干挡板。挡板可提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。换热管在管板上可按等边三角形或正方形排列。等边三角形排列较紧凑,管外流体湍动程度高,传热分系数大;正方形排列则管外清洗方便,适用于易结垢的流体。
管壳式换热器中换热管与管板的连接焊接
换热管与管板采用焊接连接时,由于对管板加工要求较低,制造工艺简单,有较好的密封性,并且焊接、外观检查、维修都很方便,是目前管壳式换热器中换热管与管板连接应用较为广泛的一种连接方法。在采用焊接连接时,云南不锈钢列管式换热器,有保证焊接接头密封性及抗拉脱强度的强度焊和仅保证换热管和管板连接密封性的密封焊。对于强度焊其使用性能有所限制,仅适用于振动较小和无间隙腐蚀的场合。
采用焊接连接时,换热管间距离不能太近,否则受热影响,焊缝质量不易得到保证,同时管端应留有一定的距离,以利于减少相互之间的焊接应力。换热管伸出管板的长度要满足规定的要求,以保证其有效的承载能力。在焊接方法上,根据换热管和管板的材质可以采用焊条电弧焊、TIG焊、CO2焊等方法进行焊接。对于换热管与管板间连接要求高的换热器,如设计压力大、设计温度高、温度变化大,不锈钢列管式换热器型号,以及承受交变载荷的换热器、薄管板换热器等宜采用TIG焊。
常规的焊接连接方法,不锈钢列管式换热器定做,由于管子与管板孔之间存在间隙,易产生间隙腐蚀和过热,并且焊接接头处产生的热应力也可能造成应力腐蚀和破坏,这些都会使换热器失效。目前在国内核工业、电力工业等行业使用的换热器中,换热管与管板的连接已开始使用内孔焊接技术,这种连接方法将换热管与管板的端部焊接改为管束内孔焊接,采用全熔透形式,消除了端部焊的缝隙,提高了抗间隙腐蚀和抗应力腐蚀的能力,其抗振动疲劳强度高,能承受高温、高压,焊接接头的力学性能较好;对接头可进行内部无损探伤,焊缝内部质量可得到控制,提高了焊缝的可靠性。但内孔焊接技术装配较难,对焊接技术要求高,制造和检验复杂,并且制造成本相对较高。随着换热器向高温、高压和大型化发展,对其制造质量要求越来越高,内孔焊接技术将会得到更加广泛的应用。