管壳式换热器中换热管与管板的连接焊接
换热管与管板采用焊接连接时,由于对管板加工要求较低,制造工艺简单,有较好的密封性,并且焊接、外观检查、维修都很方便,是目前管壳式换热器中换热管与管板连接应用较为广泛的一种连接方法。在采用焊接连接时,钢制管壳式换热器定做,有保证焊接接头密封性及抗拉脱强度的强度焊和仅保证换热管和管板连接密封性的密封焊。对于强度焊其使用性能有所限制,仅适用于振动较小和无间隙腐蚀的场合。
采用焊接连接时,换热管间距离不能太近,否则受热影响,焊缝质量不易得到保证,同时管端应留有一定的距离,以利于减少相互之间的焊接应力。换热管伸出管板的长度要满足规定的要求,以保证其有效的承载能力。在焊接方法上,根据换热管和管板的材质可以采用焊条电弧焊、TIG焊、CO2焊等方法进行焊接。对于换热管与管板间连接要求高的换热器,如设计压力大、设计温度高、温度变化大,以及承受交变载荷的换热器、薄管板换热器等宜采用TIG焊。
常规的焊接连接方法,由于管子与管板孔之间存在间隙,易产生间隙腐蚀和过热,并且焊接接头处产生的热应力也可能造成应力腐蚀和破坏,这些都会使换热器失效。目前在国内核工业、电力工业等行业使用的换热器中,换热管与管板的连接已开始使用内孔焊接技术,这种连接方法将换热管与管板的端部焊接改为管束内孔焊接,采用全熔透形式,消除了端部焊的缝隙,提高了抗间隙腐蚀和抗应力腐蚀的能力,其抗振动疲劳强度高,能承受高温、高压,焊接接头的力学性能较好;对接头可进行内部无损探伤,焊缝内部质量可得到控制,提高了焊缝的可靠性。但内孔焊接技术装配较难,对焊接技术要求高,制造和检验复杂,并且制造成本相对较高。随着换热器向高温、高压和大型化发展,对其制造质量要求越来越高,内孔焊接技术将会得到更加广泛的应用。
管壳式强化传热换热器研究进展管壳式换热器强化传热一般分为主动强化传热有源强化与被动强化传热无源强化两种。有源强化传热技术包括:机械强化法、振动强化法、静电场法和抽压法等。无源强化技术包括:表面特殊处理法、粗糙表面法、扩展表面法、设置扰流元件、加涡流装置、放插入物和射流冲击法等。主动强化传热技术由于受到外加能量限制,因而工程主要采用被动强化传热技术,即通过增加单位体积内的传热面积或者提高传热系数增加传热量。目前,管壳式换热器的传热强化技术主要包括管程和壳程的传热强化研究。
热敏传感换热机组
热敏传感换热机组成功克服了上述换热器存在的技术缺陷,通过传质传热和喷射原理相结合,了因系统压力波动而引发的巨大噪音源,卧式管壳式换热器定做,不但实现了热敏和冷敏的零热阻热交换,更充分利用了冷凝水的显热值,使换热效率达到较高境界,另外该产品充分利用带压蒸汽本身的内外动能,推动整个系统的循环,大大降低了因推动系统循环而消耗的电能,郑州管壳式换热器定做,同时冷凝水可得到的回收利用,在没有特殊原因情况下系统*另外补水。使产品充分达到了节汽,节电,节水三位一体的节能效果,为用户及社会创造了可观的节能效益,产品的价值进一步增值。由于冷凝水重新被系统回收利用,整个系统用水被纯净的冷凝水完全替代,螺纹管壳式换热器定做,因而在源头上了整个系统结垢的可能性,从主换热器到用户的散热器片都在一种理想的工况条件下运行,大大提升了整个换热系统的运行效率以及换热机组的使用寿命。